
International Journal of Theoretical Physics, Vol. 44, No. 9, September 2005 ( C© 2005)
DOI: 10.1007/s10773-005-4832-5

Functionals and the Quantum Master Equation
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The quantum master equation is usually formulated in terms of functionals of the
components of mappings (fields in physpeak) from a space–time manifold M into
a finite-dimensional vector space. The master equation is the sum of two terms one
of which is the antibracket (odd poisson bracket) of functionals and the other is
the Laplacian of a functional. Both of these terms seem to depend on the fact that
the mappings on which the functionals act are vector-valued. It turns out that neither the
Laplacian nor the antibracket is well-defined for sections of an arbitrary vector bundle.
We show that if the functionals are permitted to have their values in an appropriate
graded tensor algebra whose factors are the dual of the space of smooth functions
on M , then both the antibracket and the Laplace operator can be invariantly defined.
This permits one to develop the Batalin–Vilkovisky approach to BRST cohomology for
functionals of sections of an arbitrary vector bundle.

KEY WORDS: quantum master equation; functionals; antibracket; Laplacian;
Batalin–Vilkovisky.

1. INTRODUCTION

The quantum master equation first appeared as a necessary condition for
quantizing certain field theories using the path-integral formalism and BRST
cohomological methods (Henneaux and Teitelboim, 1992). Present formulations
of the equation use the Batalin–Vilkovisky approach to BRST theories making it
possible to apply it to a wider class of field theories.

Among other things the quantum master equation has been responsible for
inspiring generalizations of both symplectic geometry and geometric formula-
tions of Laplace’s equation to structures on supermanifolds such as odd Poisson
structures and odd Laplacians (Khudaverdian, 1991; Khudaverdian and Voronov,
2002; Schwarz, 1993), and many others. Some of these developments have fo-
cussed on finite dimensional theories although the motivating field theories are
infinite dimensional.
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It is our purpose to formulate the quantum master equation in a mathemati-
cally rigorous language which allows the fields of a physical theory to be sections
of an arbitrary vector bundle W . It is our intent to keep the language as close to
that used by working physicists as possible.

Our mathematical development holds no surprises when the bundle is trivial,
however in the more general case when W is not trivial, we find that the usual
antibracket of functionals of sections of the vector bundle W → M has no obvious
invariant meaning. We show how to modify the usual idea of a functional by
allowing it to be tensor-valued and in this way we obtain an invariant antibracket.
This modified functional requires certain extra conditions, a kind of “equivariance”
and a “reduction” condition on an open cover possessing a partition of unity.
With these conditions we can define an antibracket and a Laplace operator for
these tensor-valued functionals and consequently a well-defined quantum master
equation.

We do not possess a complete understanding of the conditions required for
“equivariance” and “reduction” but we suspect that cohomological obstructions
exist in general. This is beyond the scope of the present work which seeks to obtain
a correct invariant formulation of the quantum master equation.

2. PHYSICAL AND MATHEMATICAL PRELIMINARIES

We consider physical theories for which the fields of the theory are sections
of a vector bundle V → M over a manifold M representing either space or space–
time. When V = M × V0 for some finite-dimensional vector space V0 the fields of
the theory may be regarded as mappings φ̂ from M into V0 and the corresponding
sections of V → M the mappings φ : M → V given by φ(x) = (x, φ̂(x)), x ∈ M.

When M is contractible as is the case when M is three-dimensional Euclidean
space or Minkowski space, V is necessarily trivial. In general, it is not. A theory
such as Yang–Mills theory may be formulated either over Minkowski space or
over other manifolds such as spheres or torii depending on boundary conditions.
When M is contractible a Yang–Mills field may be identified as a section of the
trivial vector bundle T ∗M ⊗ g where g is the Lie-algebra of the structure group
G of the theory. In general a Yang–Mills field is a connection on a principal fiber
bundle P → M with structure group G. The space of connections is an affine
space, but if one fixes a connection ω0, then every field (connection) assumes the
form ω0 + τ where τ is a tensorial one-form τ : TP → g. Recall however that if
K = P ×G g is the bundle associated to P and the adjoint action of G on its Lie
algebra g, then the space of all tensorial one-forms τ : TP → g is in one-to-one
correspondence with the space of mappings τ̂ : TM → K such that, for x ∈ M,

τ̂x maps TxM into the fiber Kx of K over x (see Kobayashi and Nomizu, 1963,
p. 75 and 76). It follows almost immediately that the space of tensorial one-forms
τ : TP → g is in one-to-one correspondence with the space of sections of the
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vector bundle T ∗M ⊗ K → M. In this way the space of gauge fields may be
represented as sections of a vector bundle over M and consequently falls within
the scope of the present paper.

To implement gauge symmetries of a field theory ghosts, ghosts of ghosts,
etc., must be introduced. This gives rise to a new vector bundle E → M described
briefly below. The notion of an antibracket requires new fields called antifields
which we identify as sections of the dual bundle E∗ → M (with appropriate
parities assigned to its fibers). Finally, the functionals we consider are mappings
from the set of all sections of the bundle E ⊕ E∗ → M into the field C of complex
numbers.

Since we will be concerned with various bundles V,E,E∗, E ⊕ E∗ over M

we develop our notation and ideas on a generic vector bundle W → M specializing
W when necessary.

Let J∞W be the infinite jet bundle of W. The restriction of the infinite
jet bundle over an appropriate open set U ⊂ M is trivial with fiber an infinite
dimensional vector space V ∞. The bundle

π∞ : J∞WU = U × V ∞ → U

then has coordinates given by(
xi, ua, ua

i , u
a
i1i2

, . . . ,
)
.

We use multiindex notation and the summation convention throughout the paper.
If j∞φ is the section of J∞W induced by a section φ of the bundle W , then
ua ◦ j∞φ = ua ◦ φ and

ua
I ◦ j∞φ = (∂i1∂i2 . . . ∂ir )(u

a ◦ j∞φ)

where r is the order of the symmetric multiindex I = {i1, i2, · · · , ir}, with the
convention that, for r = 0, there are no derivatives. For more details see (Anderson,
1996) and (Krasil’shchik and Vinogradov, 1998).

Let LocW denote the algebra of local functions where a local function on
J∞W is defined to be the pull-back of a smooth function on some finite jet bundle
JpW via the projection from J∞W to JpW . Let Loc0

W denote the subalgebra of
LocW such that P ∈ Loc0

W iff (j∞φ)∗P has compact support for all φ ∈ �W with
compact support and where �W denotes the set of sections of the bundle W → M .
The de Rham complex of differential forms �∗(J∞W, d) on J∞W possesses a
differential ideal, the ideal C of contact forms θ which satisfy (j∞φ)∗θ = 0 for all
sections φ with compact support. This ideal is generated by the contact one-forms
which, in local coordinates, assume the form θa

J = dua
J − ua

iJ dxi .
Now let C0 denote the set of contact one-forms of order zero. Contact one-

forms of order zero satisfy (j 1φ)∗(θ ) = 0 and, in local coordinates, their generators
assume the form θa = dua − ua

i dxi . Let �n,1 denote the subspace of �n+1(J∞W )
which is locally generated by the forms {(θa ∧ dnx)} over LocW . Notice that
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both C0 and �n,1 = �n,1(J∞W ) are modules over LocW . Let ν denote a fixed
volume element on M and notice that in local coordinates ν takes the form
ν = f dnx = f dx1 ∧ dx2 ∧ . . . ∧ dxn for some function f : U → R where U is
a subset of M on which the xi’s are defined. Finally, let �n,0 denote the subspace
of �n+1(J∞W ) which is locally generated by the volume ν over LocW .

Define the operator Di (total derivative) by Di = ∂
∂xi + ua

iJ
∂

∂ua
J

(recall that
we assume the summation convention, i.e., the sum is over all a and multiindex
J ). For I = {i1i2 . . . ik} where k > 0, DI is defined by DI = Di1 ◦ Di2 ◦ . . . ◦
Dik . If I is empty I = {} then DI is just multiplication by 1. We also define
(−D)I = (−1)|I |DI . Recall that the Euler–Lagrange operator maps �n,0(J∞W )
into �n,1(J∞W ) and is defined in local coordinates by

E(Pν) = Ea(P )(θa ∧ ν)

where P ∈ LocW, ν is the volume form on the base manifold M , and the compo-
nents Ea(P ) are given by

Ea(P ) = (−D)I

(
∂P

∂ua
I

)
.

For simplicity of notation we may use E(P ) for E(Pν). When W = E ⊕ E∗ for
some bundle E we denote the Euler operator acting on a local function P ∈ LocW

by ẼaP . The components of this operator are of two types. Certain of them refer
to coordinates on the vector bundle E and the others to coordinates on its dual
bundle E∗. This complicates the notation and will be dealt with as the need arises.
We drop the bold type for the Euler operator throughout the remainder of the paper
as there will be little confusion in doing so.

We also will have occasional use for the the space of horizontal forms �n−1,0

which is locally generated by the forms ∂µ ν over LocW . The correspond-
ing horizontal differential dH : �n−1,0 → �n,0 is defined by dH (jµ(∂µ ν)) =
(Dµjµ)ν.

To say that A is a local functional means that A is a mapping from the
space of � = �W of sections of W → M into C such that for some local function
A : J∞W → C,

A(φ) =
∫

M

[A ◦ jφ]ν

for all φ ∈ �.

Here, as above, ν is a volume on M which will remain fixed throughout the
paper and for simplicity of notation jφ will denote the section of J∞W → M

induced by φ (denoted by j∞φ above).
A field Lagrangian is a local function L on J∞V where V → M is the

bundle whose sections are the fields of the theory. Its corresponding functional
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S : �V → C given by

S(φ) =
∫

M

[L ◦ jφ]ν

is the action of the theory.
We say that L possesses gauge freedom if there is a parameter space 
 and

a mapping δ from 
 into the space of generalized vector fields on J∞V subject
to certain properties. First, for ξ ∈ 
, δ(ξ ) is an evolutionary vector field. Such
fields may be written as

δ(ξ ) = δa(ξ )
∂

∂ua

where (xµ, ua
I ) are local coordinates on J∞V adapted to a chart (xµ) on M

and where δa(ξ ) ∈ LocV . Moreover, it is required that such a vector field have a
unique prolongation Pr(δ(ξ )) to J∞V and that this prolongation satisfy the condi-
tion: Pr(δ(ξ ))(L) = dH α where dH is the horizontal differential on the variational
complex on J∞V (Al-Ashhab and Fulp, 2005; Barnich et al., 1998; Olver, 1986).
In local coordinates this means that Pr(δ(ξ ))(L) is the product of a divergence
with the volume ν. This is equivalent to saying that the action is preserved under
the flow of Pr(δ(ξ )) on J∞V. Generally, 
 may be identified as a linear sub-
space of the space of all sections of a vector bundle B → J∞V (see Giachetta
et al., 2005). This bundle is dependent on the Lagrangian of the theory. In general,
roughly speaking, gauge parameters are functions of points of M, of the fields of
the theory, and of the derivatives of the fields. In simpler cases they are functions
only of points of M and in this case 
 is a subspace of the space of sections of a
vector bundle B → M. For simplicity we restrict our attention to this case.

In this case one introduces a new vector bundle C1 → M whose fibers are
the same as those of B → M but with reversed parity. Its sections are called ghost
fields. If the gauge symmetries are reducible (see Henneaux and Teitelboim, 1992
for relevant definitions) there should, in principle, exist additional bundles

C2 → M,C2 → M, . . . , Ck → M

depending on the order of reducibility. The author has not seen this explicitly done
for the general case and in fact certain rank conditions are undoubtedly required
(Batalin and Semikhatov, 2003). Sections of C2 → M are called ghosts of ghosts
and similar language is used for higher orders of reducibility.

We define the vector bundle E by

E = V ⊕ C1 ⊕ C2 ⊕ · · · ⊕ Ck −→ M.

Sections of E → M include all fields and ghost fields. For details regarding parity
see Henneaux and Teitelboim (1992).
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We should point out that an alternative approach to incorporating ghosts,
ghosts of ghosts, etc., makes use of a sheaf-theoretic approach Giachetta et al.
(2005) which in many ways is preferable, but we want to keep the language closer
to that of Henneaux and Teitelboim (1992) and of many practitioners of the theory.

From this point on we refer to sections of E as being fields. We introduce the
bundle E∗ → M dual to E but assign to each fiber E∗

x a parity which is opposite
that of Ex, x ∈ M. Sections of this new bundle will be called antifields.

Sections of the bundle E ⊕ E∗ → M will be denoted by φ̃ = (φ, φ∗) where
φ is a section of E → M and φ∗ is a section of E∗ → M. If (xµ, ua) and (xµ, u∗

b)
are charts of E and E∗, respectively, which are adapted to the chart (xµ) of M

then (xµ, ua, u∗
b) is a chart of E ⊕ E∗ adapted to (xµ). If the coordinate ua has

parity εa, then the coordinate u∗
a has parity ε∗

a = εa + 1.

3. ANTIBRACKETS AND THE LAPLACIAN

Roughly speaking, a functional is a mapping A from the space � = �W of
all sections of a vector bundle W → M into the field C of complex numbers. We
will assume that A is smooth in the sense we now describe. Any definition of
derivative of a function defined on a vector space such as � seems to require a
topology on that space such that the operations are continuous. One can obtain
a meaningful concept of derivative on a Frećhet space. There are many ways to
obtain such a topology on the space � of sections of a vector bundle. We require
no particular topology on � except that it provide a reasonable class of functions
which are differentiable. We require the following properties of the derivative and
any definition satisfying these properties will be adequate for our purposes here.
Let S be any topological vector space over C. If A is a mapping from � into S

and φ ∈ �, then the derivative, DφA of A at φ, is required to be a linear mapping
from Tφ� = � into S subject to the following properties:

(1) If λ → φ(λ) is a smooth curve from an interval into �, then

d

dλ
[φ(λ)](x) = d

dλ
[φ(λ)(x)], x ∈ M.

(2) If λ → φ(λ) is a smooth curve from an interval into �, then

(Dφ(λ)A)

(
d

dλ
φ(λ)

)
= d

dλ
A(φ(λ)).

(3) If C∞M acts continuously and linearly on S and A(f φ) = fA(φ) for
f ∈ C∞M,φ ∈ �, then

d

dλ
A(φ0 + λf δ) = f Dφ0A(δ)

for f ∈ C∞M,φ0, δ ∈ �, λ ∈ R.
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A functional is a smooth (infinitely differentiable) mapping A from � into C.

Remark. Recall that if λ → φ(λ) is a (smooth) curve in �, such that φ(0) = φ0,
d
dλ

φ(λ)|λ=0 = δ ∈ Tφ0�, then

Dφ0A(δ) = d

dλ

∫
M

[A ◦ jφ]ν =
∫

M

[E(A) ◦ jφ](δ)ν

where E is the usual Euler operator regarded as a mapping from �n,0 into �n,1 and
where we make the usual assumptions regarding the vanishing of surface terms at
infinity. Here (E(A) ◦ jφ)(δ) = (Ea(A) ◦ jφ)δa. Notice that δ is tangent to � at
φ0 but it may also be identified as a vector field along φ0, i.e., δ(x) ∈ Tφ(x)J

∞W

for each x ∈ M.

Let F = F� denote the linear space of all functionals on � = �W . Observe
that it is an algebra relative to the usual pointwise operations:

(A1 + A2)(φ) = A1(φ) + A2(φ), (cA)(φ) = cA(φ), (A1A2)(φ) = A1(φ)A2(φ),

for A,A1,A2 ∈ F , c ∈ C, φ ∈ �. Also observe that the space of local functionals
is a subspace of F but is not a subalgebra. Thus the space of local functionals is
not a Poisson algebra relative to the antibracket.

The quantum master equation is

�A + i

h
(A,S) = 0

where A is a functional and S is a local functional which is an appropriate
homological deformation of the action functional S0 defined by the Lagrangian L

of the field theory: S0(φ) = ∫
M

[L ◦ jφ]ν, φ ∈ � (see Henneaux and Teitelboim,
1992 for details). Here (·, ·) is the antibracket of functionals and � is the Laplace
operator. It is precisely these concepts which are the primary focus of this paper.
One has a “reasonable” mathematically rigorous definition of the antibracket and
the Laplace operator for field theories for which the fields have their values in a
finite-dimensional vector space, but not for fields which are vector-bundle valued.
It is our intent to rectify this situation.

Recall that if the fields have their values in the vector space V0, then the
antibracket is usually defined for functionals A,B, by:

(A,B) = δRA
δφa

δLB
δφ∗

a

− δRA
δφ∗

a

δLB
δφa

which involve left and right partial functional derivatives (see Henneaux and
Teitelboim, 1992, p. 417). Similarly, the Laplacian is also defined in terms of
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derivatives of this kind:

� = (−1)εa+1 δR

δφa

δR

δφ∗
a

.

The φa, φ∗
a which appear in these formulas refer to the components of the fields

and antifields relative to the choice of a basis {ea} in V0 and its corresponding
dual basis {eb} of V ∗

0 , the dual space of V0 (antifields are identified as mappings
from the space–time manifold M into V ∗

0 with appropriate parity assignments). If
one chooses another basis {ēa} along with its dual basis {ēb}, then the definitions
given above are basis independent since eb = Aa

bea for some matrix A of scalars
and eb = Bb

a ea where the matrix B is the inverse of A.

On the other hand if the fields are sections of a vector bundle E → M, then
the components of the fields must be taken relative to a choice of a basis of local
sections of the bundle. Thus one selects a set {ea} of local sections of the bundle
E such that for each x ∈ M, {ea(x)} is a basis of Ex. As usual we denote the
corresponding dual basis of local sections of the dual bundle E∗ → M by {eb}.
If these local sections are defined on the open subset U of M, then sections φ of
E|U → U and φ∗ of E∗|U → U can be written as φ = φaea, φ

∗ = φ∗
be

b as in the
case of vector-valued fields described above. In case the fields are bundle-valued
and {ēa} and {ēb} is another choice of local bases of the restrictions of E and E∗ to
U, respectively, then they are related to each other as above: ēa = Ab

aeb, ē
b = Bb

a ea

with one crucial difference, namely that the entries of the matrices A and B are in
C∞U.

In our development below the evaluation of a partial functional derivative
of a given functional at a field yields a scaler. Consequently, partial functional
derivatives of a functional of mappings φ : M → V0 satisfy the transformation
law δA

δφ̄a = Ab
a

δA
δφb for scalars Ab

a. This presents no difficulty since each term in the
transformation law is a complex number (when evaluated at a field). But in the
case that the Ab

a are functions one side of the equation is a complex number while
the other side is a function! It is this issue which we deal with below.

To handle this problem we will modify the concept of functional by permitting
it to be “tensor-valued” in the sense described below. We also require that these new
functionals satisfy a kind of “equivariance” condition and a “reduction” condition.
These new functionals are useful to encode higher-order functional derivatives and
so refer to linearizations of an ordinary functional near some field φ.

In that which follows we consider two copies of the dual space (C∞M)∗ ⊗
C which we denote by C∞

0 M∗ and C∞
1 M∗. We say that α ∈ C∞

0 M∗ is even
and write ε(α) = 0 and that β ∈ C∞

1 M∗ is odd with ε(β) = 1. For ε = ε(k) =
(ε1, ε2, . . . , εk) with εi ∈ {0, 1}, for each 1 ≤ i ≤ k, C∞

ε M∗ will denote the tensor
product

C∞
ε1

M∗⊗̂C∞
ε2

M∗⊗̂ . . . ⊗̂C∞
εk

M∗.



Functionals and the Quantum Master Equation 1607

The tensor product is presumed to be graded commutative in the sense that for
α ∈ C∞

ε M∗, α′ ∈ C∞
ε′ M∗, ε = (ε1, ε2, . . . , εk), ε′ = (ε′

1, ε
′
2, . . . , ε

′
l),

α⊗̂α′ = (−1)|ε||ε
′|(α′⊗̂α) ∈ C∞

(ε,ε′)M

where |ε| = (ε1 + ε2 + . . . + εk)(mod 2), |ε′| = (ε′
1 + ε′

2 + . . . + ε′
l)(mod 2),

and (ε, ε′) = (ε1, ε2, . . . , εk, ε
′
1, ε

′
2, . . . , ε

′
l). The tensor product is also supposed

to be linear over C∞M relative to the module structures we now define. Let
C∞M act on the dual spaces below as follows: define maps C∞M × C∞

0 M∗ →
C∞

0 M∗, C∞M × C∞
1 M∗ → C∞

1 M∗ by (f α)(g) = α(fg) for f, g ∈ C∞M and α

in either C∞
0 M∗ or C∞

1 M∗. Then C∞M acts linearly on both copies of C∞M∗.
Now extend the action of C∞M so that it acts on C∞

ε M∗, ε ∈ {0, 1}k, by

g(α1⊗̂α2⊗̂ . . . ⊗̂αk) = α1⊗̂α2⊗̂ . . . ⊗̂(gαi)⊗̂ . . . ⊗̂αk)

for g ∈ C∞M,αi ∈ C∞
εi

M∗, 1 ≤ i ≤ k.

Notice that ⊗̂ can be defined in terms of the ordinary tensor product of copies
of C∞M∗ via

α1⊗̂α2⊗̂ . . . ⊗̂αk =
∑

σ

(−1)κ(σ )
(
ασ (1) ⊗ ασ (2) ⊗ . . . ⊗ ασ (k)

)
where κ(σ ) is the Koszul sign of the permutation σ. Thus if g = (g1, g2, . . . , gk) ∈
C∞Mk, then

(α1⊗̂α2⊗̂ . . . ⊗̂αk)(g) =
∑

σ

(−1)κ(σ )ασ (1)(g1)ασ (2)(g2) . . . ασ (k)(gk).

A tensor-valued functional is a smooth mapping Ã from � into C∞
ε M∗ (for

some ε = ε(k) ∈ {0, 1}k) such that Ã(gφ) = gÃ(φ), g ∈ C∞M,φ ∈ �. In this
case we say that Ã has parity ε(Ã) = |ε| with an obvious abuse of notation.

Notice that ifA : � → C is a linear functional, then Ã : � → C∞
ε M∗ defined

by Ã(φ)(f ) = A(f φ), f ∈ C∞M,φ ∈ �, is a tensor-valued functional for ε = 0
or ε = 1.

It follows that if A : � → C is any functional, then, for each φ ∈ �, one has
a tensor-valued functional Ãφ defined by

Ãφ(δ)(f ) = DφA(f δ),

for f ∈ C∞M, δ ∈ �.

We refer to the tensor-valued functional Ãφ as the linearization of A at
φ ∈ �.

Notice that if A : � → C is a local functional, A(φ) = ∫
M

[A ◦ jφ]ν, φ ∈ �,

A ∈ LocW, then the linearization of A near φ ∈ � is given, in local coordinates, by

Ãφ(δ)(f ) =
∫

M

[Ea(A) ◦ jφ](f δa)ν,

f ∈ C∞M, δ ∈ �.
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By analogy with ordinary partial derivatives, we define δL

δφa by

δLÃ
δφa

(φ0) = d

dλ
Ã(φ0 + λea)|λ=0 = Dφ0Ã(ea)

where {ea} is a basis of local sections of W → M defined on some open subset
U of M. Here φ ∈ � has the form φ = φaea, φ

a ∈ C∞U. This definition does not
work however as φ0 + λea is defined only on U and thus is not in the domain of
Ã which is �W . To get past this difficulty we restrict the class of tensor-valued
functionals below, but first we need further notation.

Assume that Ã : � → C∞
ε M∗, ε = ε(k) ∈ {0, 1}k, is an arbitrary tensor-

valued functional. If U = {Uα} is an open cover of M, we say that Ã reduces
to U if and only if there exists a partition of unity {fα} subordinate to U and a
family {Ãα} of tensor-valued functionals

Ãα : �α → C∞
ε(k)U

∗
α

defined on the space �α of sections of W |Uα → Uα, for each α, such that for
arbitrary φ ∈ � and g ∈ C∞Mk,

Ã(φ)(g) =
∑

α

Ãα(fαφ)(g|Uα)

where g|Uα = (g1|Uα, g2|Uα, . . . , gk|Uα).
Our basic assumption is that there exists a significant class of reducible

tensor-valued functionals. It is not clear how restrictive this assumption is. We
conjecture that obstructions to existence could be classified cohomologically but
we have not undertaken such a classification.

Proposition 3.1. The linearization Ãφ of an arbitrary local functional at φ ∈ �

reduces to any open cover U such that (1) U possesses a subordinate partition of
unity and (2) W |U → U is trivial for each U ∈ U .

Proof: Let A be any local functional and Ãφ its linearization at φ ∈ �. For
f ∈ C∞M, δ ∈ �,

Ãφ(δ)(f ) =
∫

M

[E(A) ◦ jφ](f δ)ν.

Let U = {Uα} be an open cover of M with subordinate partition of unity {fα}. For
each α, let Aα = A|(π∞

M )−1(Uα) and

Ãα(ψ)(g) =
∫

Uα

[E(Aα) ◦ (jφ)|(Uα)](gψ)ν
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for g ∈ C∞Uα,ψ ∈ �α where �α is the space of sections of W |Uα → Uα. Now
observe that

Ãφ(δ)(g) = Ãφ

( ∑
α

fαδ

)
(g)

=
∫

M

{[E(A) ◦ jφ]

(∑
α

(gfα)δ}
)

ν

=
∑

α

∫
Uα

{[E(Aα) ◦ (jφ)|Uα]((gfα)δ})ν

=
∑

α

Ãα(fαδ)(g|Uα).

This concludes the proof of the proposition. �

Assume that U = {Uα} is a fixed open cover of M such that W |Uα → Uα is
trivial for each α and such that {fα} is a partition of unity subordinate to U . For
each such cover let Rε = RU (ε) denote the set of all tensor-valued functionals
Ã : � → C∞

ε M∗, ε ∈ {0, 1}k, which reduce to U . Moreover, let R = RU denote
the linear space spanned by elements of Rε for various ε.

Theorem 3.2. The set R of all tensor-valued functionals which reduce to U is a
linear space under pointwise operations. It is in fact an algebra with the product
⊗̂ defined by (Ã ⊗̂ B̃)(φ) = Ã(φ) ⊗̂ B̃(φ), for Ã, B̃ ∈ R, and φ ∈ �. Moreover,
when W = E ⊕ E∗ there is a well-defined Laplace operator and a well-defined
antibracket on R which is graded skew-symmetric and which satisfies the graded
Jacobi identity.

Proof: The proof that R is an algebra is straightforward and is left to the reader.
To define the antibracket requires a number of steps.

First we must deal with the issue of parity. If Ã maps � into C∞
ε M∗, then we

define the parity of Ã to be |ε|. With this definition the product on R is obviously
graded commutative since that property holds on the range of the mapping Ã.

Left and right partial functional derivatives are related to each other by the usual
formulas:

δLÃ
δψa

= −(−1)ε(Ã)ε(ψa ) δ
RÃ

δψa
,

thus it is sufficient to work out the necessary invariance properties using left
derivatives which we denote as one would a derivative in the bosonic case.

We now show that if φ̃ = (φ, φ∗) is a section of E ⊕ E∗ → M where φ, φ∗

are sections of E → M and E∗ → M, respectively, then for arbitrary Ã : �U →
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C∞
ε U ∗, B̃ : �U → C∞

ε′ U ∗

δÃ
δφa

⊗̂ δB̃
δφ∗

b

is invariant under change of components of the fields. Here U is an arbitrary
element of the open cover U . To see this choose bases {ea}, {ēa} of sections of
E|U → U along with the corresponding dual bases {eb}, {ēb} of E∗|U → U. Let
A be a matrix whose entries are functions in C∞U such that ēa = Ab

aeb and let B

denote the inverse of A so that ēb = Bb
a ea. Now (operating with left derivatives)

we have

δÃ
δφ̄b

(φ̃) = Dφ̃Ã(ēb) = Dφ̃Ã
(
Aa

bea

) = Aa
bDφ̃Ã(ea) = Aa

b

δÃ
δφa

(φ̃).

Notice that we have used the fact that Dφ̃Ã is linear over C∞M which is a
consequence of the third property of derivatives given at the beginning of this
section (recall that Ã is linear over C∞M). A similar argument shows that

δÃ
δφ̄∗

b

(φ̃) = Bb
a

δÃ
δφ∗

a

(φ̃).

It follows that

δÃ
δφ̄b

(φ̃) ⊗̂ δÃ
δφ̄∗

b

(φ̃) = Aa
b

δÃ
δφa

(φ̃) ⊗̂ Bb
a

δÃ
δφ∗

a

(φ̃)

and that

δÃ
δφ̄b

(φ̃) ⊗̂ δÃ
δφ̄∗

b

(φ̃) = δÃ
δφa

(φ̃) ⊗̂ δÃ
δφ∗

a

(φ̃),

where we use the fact that the matrix A is the inverse of B and the fact that the
tensor product is linear over C∞M.

Consequently, the combination

δÃ
δφa

(φ̃) ⊗̂ δÃ
δφ∗

a

(φ̃)

is independent of the basis of local sections used to define it.
Observe that δÃ

δφa (φ̃) depends both on the functional Ã and on the local section
ea used to define it. Thus its parity should depend on both of these. Define

ε

(
δÃ
δφa

(φ̃)

)
= ε(Ã) + ε(ea) = ε(Ã) + εa.
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We require that if φ̃ = φaea + φ∗
be

b, then ε(ea) = ε(φa) = εa and ε(eb) =
ε(φ∗

b ) = ε∗
b = εb + 1. It is therefore consistent to require that

δÃ
δφa

⊗̂ δB̃
δφ∗

b

= (−1)(ε(Ã)+εa )(ε(B̃)+εb+1) δB̃
δφ∗

b

⊗̂ δÃ
δφa

and consequently these partial functional derivatives have the same symmetry
properties as the usual ones defined for fields φ having their values in a vector
space. We have successfully encoded the correct properties for vector-bundle
valued fields.

It follows from these remarks that we can define an antibracket of Ã, B̃,

(Ã, B̃) : �U → C∞
(ε,ε′)U

∗ by the invariant formula

(Ã, B̃) = δRÃ
δφa

⊗̂ δLB̃
δφ∗

a

− δRÃ
δφ∗

a

⊗̂ δLB̃
δφa

.

We have imposed parities in such a manner that properties such as

(Ã, B̃) = −(−1)(ε(Ã)+1)(ε(B̃)+1)(B̃, Ã)

and the graded Jacobi identity

(−1)(ε(Ã)+1)(ε(C̃)+1)(Ã, (B̃, C̃))+

(−1)(ε(B̃)+1)(ε(Ã)+1)(B̃, (C̃, Ã)) + (−1)(ε(C̃)+1)(ε(B̃)+1)(C̃, (Ã, B̃)) = 0

follow from computations strictly analogous to that of the usual case.
Recall that all these considerations are valid on an arbitrary open set U ∈ U .

Thus if we now assume that Ã, B̃ ∈ R, then it is appropriate to label Ã, B̃ with a
subscript U. We write

(Ã, B̃)α = (Ã, B̃)Uα
= (ÃUα

, B̃Uα
) = (Ãα, B̃α)

for this antibracket on �Uα
. If Ã ∈ Rε(k), B̃ ∈ Rε(l), we have

Ã(φ̃)(g) =
∑

α

Ãα(fαφ̃)(g|Uα) B̃(φ̃)(h) =
∑

α

B̃α(fαφ̃)(h|Uα)

where {Ãα} and {B̃α} are appropriate families of tensor-valued functionals, φ̃ ∈ �,
and g ∈ C∞Mk, h ∈ C∞Ml. As before

Ãα, B̃α : �α → C∞
ε(r)U

∗
α

are defined on the space �α of sections of W |Uα → Uα, for each α and for
r = k, r = l, respectively. We now define

(Ã, B̃)(φ̃) =
∑

α

(Ãα, B̃α)(fαφ̃)
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for φ ∈ �E⊕E∗ . Since

(Ã, (B̃, C̃))(φ) =
∑

α

(Ãα, (B̃, C̃)α)(fαφ̃) =
∑

α

(Ãα, (B̃α, C̃α))(fαφ̃)

for all φ ∈ � we see that the graded Jacobi identity holds on R and that the bracket
is graded skew-symmetric. This concludes the proof that there is a well-defined
antibracket on R.

Now consider the Laplacian. If the tensor-valued functional Ã ∈ Rε(k) is
given by

Ã(φ̃)(g) =
∑

α

Ãα(fαφ̃)(g|Uα)

as above we define

�Ã(φ̃) =
∑

α

�αÃα(fαφ̃)

where

�αÃα(φ̃) = (−1)ε
a+1 δR

δφa

(
δRÃ
δφ∗

a

)
(φ̃).

To see that the latter is independent of the choice of local sections of E ⊕ E∗ → M

let {ea}, {ēb} be two bases of sections of E ⊕ E∗)|Uα
→ Uα. We drop the R on

δR in the following calculation and ignore the parity as it plays no role in the
calculation. Observe that δÃ

δφ∗
a

is a mapping from �α into C∞
ε(k)U

∗
α and so δ

δφa can
operate on it. Also we already know how δÃ

δφ∗
a

transforms. We have

δ

δφ̄a

(
δÃ
δφ̄∗

a

)
(ψ) = Dψ

(
δÃ
δφ̄∗

a

)
(ēa)

= Dψ

(
Ba

c

δÃ
δφ∗

a

) (
Ab

aeb

)
= Ba

c Ab
aDψ

(
δÃ
δφ∗

a

)
(eb)

= δR

δφa

(
δÃ
δφ∗

a

)
(ψ).

where A,B are inverse matrices. It follows that the Laplacian is well-defined on
R and the theorem follows. �
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4. A NEW ANTIBRACKET OF LOCAL FUNCTIONALS

In this section we introduce a new antibracket of local functionals and derive
an interesting double integral which clarifies how one would compute it. Consider
two copies of C, denoted C0 and C1. Elements of C0 are called even scalars while
those of C1 are odd. If A : �E ⊕ E∗ → C is any functional we write A : �E ⊕ E∗ →
Cε if and only if A has parity ε ∈ {0, 1}. Given functionals

A : �E ⊕ E∗ → Cε B : �E ⊕ E∗ → Cε′

and φ̃ ∈ � we define

(A,B)φ̃ = (Ãφ, B̃φ).

Thus this bracket of functionals has its values in C∞
ε M∗ ⊗̂ C∞

ε′ M∗ which is clearly
different from the usual antibracket. On the other hand this fits into our general
scheme.

Indeed the space (C0 ⊕ C1) ⊕ ⊕k ⊕(ε1,...,εk ) C∞
(ε1,...,εk )M

∗ is an algebra over C.
Our tensor-valued functionals are mappings from � into this algebra and ordinary
functionals are also in this space.

At this point we wish to calculate in detail this new bracket of two functionals.
To do this first recall that, for α ∈ C∞

ε M∗, β ∈ C∞
ε′ M∗ with ε, ε′ ∈ {0, 1}, we have

that (α ⊗̂ β)(f, g) = α(f )β(g) + (−1)|ε||ε
′|α(g)β(f ), for f, g ∈ C∞M. We will

be able to use this to obtain an explicit formula for our brackets of functionals
below.

If A,B are functionals we have from our remark above that at fixed φ̃ ∈ � =
�E ⊕ E∗

(A,B)φ̃(δ̃) = (Ãφ̃ , B̃φ̃)(δ̃) =
∑

α

(Ãα, B̃α)(fαδ̃)

where

Ãφ̃(δ̃)(g) =
∑

α

Ãα(fαδ̃)(g|Uα) B̃φ̃(δ̃)(g) =
∑

α

B̃α(fαδ̃)(g|Uα)

and the φ̃ are suppressed in the terms involving Ãα and B̃α.

Moreover, since A,B are local, there exists A,B ∈ LocE ⊕ E∗ such that A =∫
M

Aν,B = ∫
M

Bν and the tensor-valued functionals Ãα, B̃α are given locally by

Ãα(ψ)(g) =
∫

Uα

[Ẽ(Aα) ◦ (j φ̃)|(Uα)](gψ)ν

and

B̃α(ψ)(g) =
∫

Uα

[Ẽ(Bα) ◦ (j φ̃)|(Uα)](gψ)ν
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where Aα = A|(π∞
M )−1(Uα), Bα = B|(π∞

M )−1(Uα), g ∈ C∞Uα,ψ ∈ �α and where
�α is the space of sections of (E ⊕ E∗)|Uα → Uα. Here π∞

M is the bundle mapping
J∞(E ⊕ E∗) → M.

Notice that for P ∈ LocE ⊕ E∗ and 1 ≤ a, b ≤ n,

Ẽa(P ) = (−D)I

(
∂P

∂ua
I

)
= EaP Ẽb+n(P ) = (−D∗)I

(
∂P

∂u∗
bI

)
= Eb

∗P

where

Dµ = ∂

∂xµ
+ ua

µI

∂

∂ua
I

D∗
µ = ∂

∂xµ
+ u∗

µbI

∂

∂u∗
bI

and where n is the dimension of a typical fiber of E.

To compute our new antibracket of A,B we need only compute (Ãα, B̃α),
where (Ãα, B̃α) is the mapping from �Uα

into C∞
(ε,ε′)U

∗
α given by the invariant

formula

(Ãα, B̃α) = δRÃα

δφ̃a
⊗̂ δLB̃α

δφ̃∗
a

− δRÃα

δφ̃∗
a

⊗̂ δLB̃α

δφ̃a
.

As an example, one of the four terms we need is

δLB̃α

δφ̃∗
a

(δ)(f ) = DδB̃α(ea)(f )

where f ∈ C∞Uα and {ea} is a fixed basis of local sections of � defined on
Uα (with dual basis {eb}). Now B̃α depends implicitly on φ̃, but is linear, so
DδB̃α = B̃α is independent of δ. Thus

DδB̃α(ea)(f ) =
∫

Uα

(E∗Bα ◦ j φ̃)(f ea)ν

and

δLB̃α

δφ̃∗
a

(δ)(f ) =
∫

Uα

(Ea
∗Bα ◦ j φ̃)f ν.

This is the correct expression for the left functional derivative but the right
functional derivative will have a sign depending on parity. We define the left Euler
operator EL to be the usual Euler operator but when we need right derivatives we
write ER = ±E with the appropriate parity built in for right derivatives.

First notice that(
δRÃα

δφ̃a
⊗̂ δLB̃α

δφ̃∗
a

)
(δ)(f ⊗ g) =

∫
Uα

(
ER

a Aα ◦ jφ
)
f ν

∫
Uα

((EL)a∗Bα ◦ jφ∗)gν

+ (−1)|ε||ε
′ |
∫

Uα

(
ER

a Aα ◦ jφ
)
gν

∫
Uα

((EL)a∗Bα ◦ jφ∗)f ν.
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Given two mappings r : X → P and s : Y → Q, define a new mapping r × s

from X × Y to P × Q by (x, y) → (r(x), s(y)). If P = Q is the set of real or
complex scalars define r ⊗ s by (r ⊗ s)(x, y) = r(x)s(y).

Using this notation we formally define

ER
a Aα ⊗̂ (EL)a∗Bα = (

ER
a A

) ⊗ ((EL)a∗Bα) + (−1)|ε||ε
′|((ER

a Aα

) ⊗ ((EL)a∗Bα)
)

so that(
δRÃα

δφ̃a
⊗̂ δLB̃α

δφ̃∗
a

)
(δ)(f ⊗ g) =

∫∫ [(
ER

a Aα ⊗̂ (EL)a∗Bα

) ◦ (jφ × jφ∗)
]

× (f ⊗ g)(x, y)(νx ⊗ νy).

If we define a formal “bracket” {·, ·} on J∞(E ⊕ E∗) by

{A,B} = [
ER

a Aα ⊗̂ (EL)a∗Bα

] − [
(ER)a∗Aα ⊗̂ EL

a Bα

]
,

then we obtain the local formula:

(Ãα, B̃α)(δ)(f ⊗ g) =
∫∫

[{Aα,Bα} ◦ (jφ × jφ∗)](f ⊗ g)(x, y)(νx ⊗ νy).

Remark. While the latter formula is somewhat heuristic, in the bosonic case there
is a well-defined bracket {·, ·} of the type referred to above although it is not a Lie
bracket. In that case it is essentially the second term of an sh–Lie structure (see
Al-Ashhab and Fulp, 2005; Barnich et al., 1998; Barnich and Henneaux, 1996 and
references therein). It is likely that this is also true in this case but that aspect has
not been fully explored at this time and is beyond the scope of the present paper.
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